

6X^{online} Introduction

February 2022

1

Welcome

Presenter

- Peter Forster
- RKS Technical Support, Houston

This presentation will be a combination of

- Slides & Online Demo (60 minutes)
- Closing Discussion (30 minutes)

Please submit questions on the "chat" panel. We will monitor it and incorporate them into the closing discussion

Introduction – why simulate?

Rate Transient Analysis

- Forecasts EUR using analytic models to generate production profiles
- Assumes single phase flow
- Assumes reservoir homogeneity
- Assumes fracture conductivity is constant

Numerical Simulation

- Predicts production using a finite difference simulator
- Allows for multi-phase black oil or compositional flow
- Is based on an earth model
- Fractures grow and close dynamically based on pumping schedule and depletion

Simulation is the only way to capture all the physical process that contribute to production performance

Introduction – 6X Reservoir Simulator

- Integrates flow, frac design and geomechanics in <u>one</u> model
 - Multi-well, black-oil, compositional
- Requires a definition of the geology, fluids and stress state
- Models pumping schedule, flowback and production
- Focuses on decisions that influence production performance
- Workflows:
 - Well placement & spacing
 - Including interference & stress shadowing
 - Completion design
 - Including details of stages and clusters
 - Cyclic gas injection EOR
 - Re-frac

Introduction – 6X^{online}

- A <u>web</u> application to enable routine workflows
 - Supports limited functionality on layer cake models
 - Collates data
 - Runs 6X simulator
 - Locally or on an external server or on the cloud
 - Cases can be exported and customized to access advanced functionality

Note:
6X^{online} does not access all of the
6X functionality

What do we mean "Integrates flow, frac design and geomechanics"?

6X Conceptual overview – Input initial state

Stresses:

- Shmin, Shmax, Sv
- Strength
 - A measure of the extra force required to break the rock

Fracture enhancement parameters

- Pore volume expansion
 - The expansion rate when the rock breaks and the fractures expand
- Tensile
 - The maximum amount of permeability to be added
- Shear
 - The maximum amount of matrix-fracture interface (surface area)
- Residual connectivity
 - The amount of permeability which will remain post-closure
 - For propped and unpropped volume

Model geomechanics of rock breakage

Model geomechanics of rock breakage

- As pressure increases due to pumping
 - Pressure exceeds the minimum stress and net stress becomes negative

As pumping initiates, the pressure

- Gets higher at the well
- Moves out into the reservoir

Model geomechanics of rock breakage

- As pressure increases due to pumping
 - Pressure exceeds the minimum stress and net stress becomes negative

As pumping progresses the pressure

- Ultimately exceeds the initial stress
- Moves further out into the reservoir

Model geomechanics of rock breakage

- As pressure increases due to pumping
 - Pressure exceeds the minimum stress and net stress becomes negative
- In the area of negative stress
 - Tensile failure adds permeability due to long cracks
 - Shear failure adds surface area due to 'rubblization'

Model geomechanics of rock breakage

- As pressure increases due to pumping
 - Pressure exceeds the minimum stress and net stress becomes negative
- In the area of negative stress
 - Tensile failure adds permeability due to long cracks
 - Shear failure adds surface area due to 'rubblization'
- The SRV size is determined by how far from the well the "negative stress zone" has reached

As pressure increases due to pumping

- Tensile failure adds permeability due to long cracks
- Shear failure adds surface area due to 'rubblization'

As pressure decreases due to flowback and production

- Net stress increases
- Permeability declines to a defined residual value

Example 1 – Well with a single frac

- The objective of this example is to show:
 - 1. Construction of a single stage model
 - Data input
 - Build, check & run
 - Plot and analyze the results

Example 1

The reservoir has a top depth of 9,800 ft and consists of a single unit:

- Properties
 - Permeability = 0.0001 mDarcy, Porosity = 7%, Thickness = 500 ft
- Fluid
 - Light oil, at 7,200 psia, with a bubble point of 4,000 psia
 - Gas Contact at **8,900 ft** TVDSS (above)
 - Water Contact at 12,000 ft TVDSS (below)
- Stresses:
 - SHmin **9,000 psia**, SHmax **12,000 psia**, SV **14,000 psia**
- Fracture enhancement
 - Pore volume expansion 900 μSips, Tensile + 1000 mDarcy, Shear + 2 1/ft2, Residual connectivity stim 0%, prop 40%

• Depth 10,070 ft, Length 300 ft

Stage

- Length 150 ft, Spacing 75 ft
- Rate 20 barrels / min (28.8k/ day), pumping for 45 minutes, wireline operations 1 hour

Production

- 250 barrels / day of liquid for 0.25 years
- Min BHP 1,000 psia

Example 1 – Well with a single frac

- The objective of this example is to show:
 - 1. Construction of a single stage model
 - Data input
 - Build, check & run
 - Plot and analyze the results
 - 2. Showing the impact of data edits on model performance
 - Change the amount of SHEAR fracturing... to reduce leak off
 - Build, check & run
 - Plot & compare results from 2 models

Example 1 – Well with a single frac

The objective of this example is to show:

- 1. Construction of a single stage model
 - Data input
 - Build, check & run
 - Plot and analyze the results
- 2. Showing the impact of data edits on model performance
 - Change the amount of SHEAR fracturing... to reduce leak off
 - Build, check & run
 - Plot & compare results from 2 models

We can CALIBRATE the model inputs to MATCH historical performance

6X Conceptual overview - recap

Model geomechanics of rock breakage

- As pressure increases due to pumping
 - Pressure exceeds the minimum stress and net stress becomes negative
- In the area of negative stress
 - Tensile failure adds permeability due to long cracks
 - Shear failure adds surface area due to 'rubblization'
- The SRV size is determined by how far from the well the "negative stress zone" has reached
- As pressure decreases due to flowback and production
 - Net stress increases
 - Permeability declines to a defined residual value

As fluid is pumped:

- · Pressure increases until minimum stress is exceeded
 - Net stress becomes negative
 - o Tensile failure adds permeability
 - Shear failure adds surface area due to rubblization

As flowback and production progresses:

- Pressure decreases
- Enhancement decays to a defined residual

Model geomechanics of rock breakage

- As pressure increases due to pumping
 - Pressure exceeds the minimum stress and net stress becomes negative
- In the area of negative stress
 - Tensile failure adds permeability due to long cracks
 - Shear failure adds surface area due to 'rubblization'
- The SRV size is determined by how far from the well the "negative stress zone" has reached
- As pressure decreases due to flowback and production
 - Net stress increases
 - Permeability declines to a defined residual value

Model geomechanics of rock breakage

- As pressure increases due to pumping
 - Pressure exceeds the minimum stress and net stress becomes negative
- In the area of negative stress
 - Tensile failure adds permeability due to long cracks
 - Shear failure adds surface area due to 'rubblization'
- The SRV size is determined by how far from the well the "negative stress zone" has reached
- As pressure decreases due to flowback and production
 - Net stress increases
 - Permeability declines to a defined residual value

strength	0	compressibility	900
perm addition (tensile)	1000	residual-k (stim)	0
rubble generation (shear)	2	residual-k (prop)	25

B. Amount of negative stress required before enhancement

Model geomechanics of rock breakage

- As pressure increases due to pumping
 - Pressure exceeds the minimum stress and net stress becomes negative
- In the area of negative stress
 - Tensile failure adds permeability due to long cracks
 - Shear failure adds surface area due to 'rubblization'
- The SRV size is determined by how far from the well the "negative stress zone" has reached

 B. Amount of negative stress required before enhancement
- As pressure decreases due to flowback and production
 - Net stress increases
 - Permeability declines to a defined residual value

C. Maximum tensile (perm) enhancement

Model geomechanics of rock breakage

- As pressure increases due to pumping
 - Pressure exceeds the minimum stress and net stress becomes negative
- In the area of negative stress
 - Tensile failure adds permeability due to long cracks
 - Shear failure adds surface area due to 'rubblization'
- The SRV size is determined by how far from the well the "negative stress zone" has reached
- As pressure decreases due to flowback and production
 - Net stress increases
 - Permeability declines to a defined residual value

Model geomechanics of rock breakage

- As pressure increases due to pumping
 - Pressure exceeds the minimum stress and net stress becomes negative
- In the area of negative stress
 - Tensile failure adds permeability due to long cracks
 - Shear failure adds surface area due to 'rubblization'
- The SRV size is determined by how far from the well the "negative stress zone" has reached B. Amount of negative stress required before enhancement
- As pressure decreases due to flowback and production
 - Net stress increases
 - Permeability declines to a defined residual value

C. Maximum tensile (perm) enhancement

rubble generation (shear) 2

D. Maximum shear (surface area) enhancement

E. Pore volume expansion rate (microsips)

residual-k (prop) 25

Model geomechanics of rock breakage

- As pressure increases due to pumping
 - Pressure exceeds the minimum stress and net stress becomes negative
- In the area of negative stress
 - Tensile failure adds permeability due to long cracks
 - Shear failure adds surface area due to 'rubblization'
- The SRV size is determined by how far from the well the "negative stress zone" has reached
- As pressure decreases due to flowback and production
 - Net stress increases
 - Permeability declines to a defined residual value

F. Residual perm remaining during production (%)

Example 2 – Entire well with various stage counts

- The objective of this example is to show:
 - Construction of a 24 stage model
 - Data input
 - Build, check & run
 - Plot and analyze the results

Example 2 – Reservoir and fluid properties

The reservoir has a top depth of 9,000 ft and consists of TWO units:

- Unit One
 - Permeability = 1E-5 mDarcy, Porosity = 2%, Thickness = 100 ft
- Unit Two
 - Permeability = 1E-4 mDarcy, Porosity = 5%, Thickness = 120 ft

The units are in communication so have the same:

- Fluid
 - Light oil, with a bubble point of 3,500 psia
 - Gas Contact at **8,900 ft** TVDSS (above unit One)
 - Water Contact at 12,000 ft TVDSS (below unit Two)
- Pressure
 - Initial pressure 7,200 psia
- Stresses:
 - SHmin **9,200 psia,** SHmax **12,000 psia,** SV **14,000 psia**
- Fracture enhancement
 - Pore volume expansion 900 μSips, Tensile + 1000 mDarcy, Shear + 2 1/ft2, Residual connectivity stim 0%, prop 25%

Example 2 – Well and frac jobs

The well has

- Depth 9,080 ft, Length 10,000 ft
- Stages **24***

Each stage

- Length 300 ft
- Spacing 120ft*
- Rate 20 barrels / min (28.8k/ day)
- Pumping time 3 hours
- Wireline operations 2 hours

Production

- 2,000 barrels / day of liquid
- 4 years
- Min BHP 1,000 psia

Example 2 – Entire well with various stage counts

The objective of this example is to show:

- Construction of a 24 stage model
 - Data input
 - Build, check & run
 - Plot and analyze the results
- Showing the impact of changing the stage count
 - Vary the stage count and spacing to accommodate
 - 16 stages
 - 32 stages
 - Build, check & run
 - Plot & compare results from 3 models

Example 2 – Results Analysis and Conclusions

16 stages

Produces the most per stage

24 stages

Per stage contribution declines

32 stages

•	Per stage	contribution	declines	further
---	-----------	--------------	----------	---------

Produces the largest amount of oil

• Is the maximum # that will fit

# Stages	Cum. oil	Per stage	
	(K bbl)	(K bbl)	
16	778	48	
24	1,132	47	
32	1,268	40	

Considerations

# Stages	Additional, Per stage*				
	Cost (\$K)	Oil (K bbl)	Revenue (\$K)		
16	-	-			
24	180	44	2,200		
32	180	28	850		

*Based on

- \$600 per foot completion costs
- \$50 per barrel oil price
- 1. More stages produce more oil by extending the plateau
- 2. Is the extra upfront investment justified?

Private & Confidential

Example 2 – Entire well with various stage counts

The objective of this example is to show:

- Construction of a 24 stage model
 - Data input
 - Build, check & run
 - Plot and analyze the results
- Showing the impact of changing the stage count
 - Vary the stage count and spacing to accommodate
 - 16 stages
 - 32 stages
 - Build, check & run
 - Plot & compare results from 3 models

We can EXPERIMENT with alternate development strategies and EVALUATE the impact on production

Summary – Introduction to 6X and 6X^{online}

- We have shown:
 - Single well single stage
 - Changing the rock's response
 - allows CALIBRATION
 - Single well multiple stages
 - Changing design, e.g. stage count
 - allows EXPERIMENTATION

- Contact
 - Peter Forster
 - to request more information
 - pforster@ridgewaykitesoftware.com
 - Tommy Miller
 - to request access to 6X^{online}
 - tmiller@ridgewaykitesoftware.com
 - Also: www.ridgewaykite.com

is fluid is pumped: Pressure increases until minimum stress is exceeded Net stress becomes negative

Tensile failure adds permeability
 Shear failure adds surface area due to <u>rubblization</u>

Enhancement decays to a defined residu-

Questions?

- From the Chat panel
- Live...

- Net stress becomes negative
- Tensile failure adds permeability
- Shear failure adds surface area due to rubblization

As flowback and production progresses:

- Pressure decreases
- Enhancement decays to a defined residual

• We will be back with a second presentation soon

The END of Introduction